NEC 304

STLD

Lecture 13 Combinational Design Procedure

Rajeev Pandey

Department Of ECE

rajeevvce2007@gmail.com

Overview

- ° Design digital circuit from specification
- ° Digital inputs and outputs known
 - Need to determine logic that can *transform* data
- ° Start in truth table form
- ° Create K-map for each output based on function of inputs
- ° Determine minimized sum-of-product representation
- ° Draw circuit diagram

Design Procedure (Mano)

Design a circuit from a specification.

- 1. Determine number of required inputs and outputs.
- 2. Derive truth table
- 3. Obtain simplified Boolean functions
- 4. Draw logic diagram and verify correctness

	<u> </u>	В		K 5
	0	0	0	0 0
	0	0	1	0 1
S = A + B + C	0	1	0	0 1
R = ABC	0	1	1	0 1
	1	0	0	0 1
	1	0	1	0 1
	1	1	0	0 1
	1	1	1	1 1

Previously, we have learned...

- Boolean algebra can be used to simplify expressions, but not obvious:
 - how to proceed at each step, or
 - if solution reached is minimal.
- $^{\circ}$ Have seen five ways to represent a function:
 - Boolean expression
 - truth table
 - logic circuit
 - minterms/maxterms
 - Karnaugh map

Combinational logic design

- ° Use multiple representations of logic functions
- ° Use graphical representation to assist in simplification of function.
- ° Use concept of "don't care" conditions.
- $^{\circ}$ Example encoding BCD to seven segment display.
- ° Similar to approach used by designers in the field.

BCD to Seven Segment Display

- Our of the control of the control
- BCD uses 0's and 1's to represent decimal digits 0 9. Need four bits to represent required 10 digits.
- ° Binary coded decimal (BCD) represents each decimal digit with four bits

° List the segments that should be illuminated for each digit.

0	a,b,c,d,e,f			
1	b,c		а	ד
2	a,b,d,e,g			
3	a,b,c,d,g	f		b
4	b,c,f,g		Ø	
5	a,c,d,f,g			
6	a,c,d,e,f,g	е		С
7	a,b,c	_	d	
8	a,b,c,d,e,f,g		_	
9	a,b,c,d,f,g			

- ° Derive the truth table for the circuit.
- ° Each output column in one circuit.

		Inp	uts			O	utpu	ts		
Dec	W	X	y	Z	a	b	C	d	e	•
0	0	0	0	0	1	1	1	1	1	•
1	0	0	0	1	0	1	1	0	0	•
2	0	0	1	0	1	1	0	1	1	•
•	•	•	•	•	•	•	•	•	•	•
7	0	1	1	1	1	1	1	0	0	•
8	1	0	0	0	1	1	1	1	1	•
9	1	0	0	1	1	1	1	1	0	•

Find minimal sum-of-products representation for each output

For segment "a":

yz											
wx	00	01	11	10							
00	1	0	1	1							
01	0	1	1	1							
11											
10	1	1									

Note: Have only filled in ten squares, corresponding to the ten numerical digits we wish to represent.

- ° Fill in don't cares for undefined outputs.
 - Note that these combinations of inputs should never happen.

° Leads to a reduced implementation

For segment "a":

yz											
wx \	00	01	11	10							
00	1	0	1	1							
01	0	1	1	1							
11	X	X	X	X							
10	1	1	X	X							

Put in "X" (don't care), and interpret as either 1 or 0 as desired

- ° Circle biggest group of 1's and Don't Cares.
- ° Leads to a reduced implementation

$$F_{a1} = y$$

- ° Circle biggest group of 1's and Don't Cares.
- ° Leads to a reduced implementation

For segment "a":

- ° Circle biggest group of 1's and Don't Cares.
- ° All 1's should be covered by at least one implicant For segment "a" :

yz										
WX	00	01	11	10						
00	1	0	1	1						
01	0	1	1	1						
11	X	X	X	X						
10	1	1	X	X						
$F_{a4} = xz$										

- Put all the terms together
- ° Generate the circuit

For segment "a":

$$F = y + w + \overline{x} \overline{z} + xz$$

Example of seven segment display decoding.

Hint: Select a component and then push "?" from main menu bar to get info on what that component does and how it works.

- ° Derive the truth table for the circuit.
- ° Each output column in one circuit.

		Inp	uts			O	utpu	ts		
Dec	W	X	y	Z	a	b	C	d	e	•
0	0	0	0	0	1	1	1	1	1	•
1	0	0	0	1	0	1	1	0	0	•
2	0	0	1	0	1	1	0	1	1	•
•	•	•	•	•	•	•	•	•	•	•
7	0	1	1	1	1	1	1	0	0	•
8	1	0	0	0	1	1	1	1	1	•
9	1	0	0	1	1	1	1	1	0	•

° Find minimal sum-of-products representation for each output

For segment "b":

yz											
wx	00	01	11	10							
00	1	1	1	1							
01	1	0	1	0							
11											
10	1	1									

See if you complete this example.

Summary

- Need to formulate circuits from problem descriptions
 - 1. Determine number of inputs and outputs
 - 2. Determine truth table format
 - 3. Determine K-map
 - 4. Determine minimal SOP
- There may be multiple outputs per design
 - Solve each output separately
- Current approach doesn't have memory.
 - This will be covered next week.